New Exploration Frameworks for Temperature-Aware Design of MPSoCs

Prof. David Atienza

Dept Computer Architecture and Systems Engineering (DACYA) Complutense University of Madrid, Spain

Integrated Systems Lab (LSI) École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

MPSoC'08 Château St. Gerlach, Valkenburg, The Netherlands

Evolution of Electronics to Multi-Processor System-on-Chip (MPSoC)

■ Roadmap continues: 90→65→45 nm

 Multi-Processor System-on-Chip (MPSoC) architectures: complex HW and SW

Design Issues in MPSoCs

- MPSoCs have very sophisticated architectures
 - Complex components and CAD tools very expensive
 - Time-closure issues, system speed decreased
- Increasing thermal issues
 - Hot-spots, non-uniform thermal gradients

Advocating Thermal-Aware Design

Integration of HW/SW modeling and management

Outline

- Introduction
- MPSoC thermal modeling
 - Computational infrastructure
 - Closed-loop statistics extraction system
 - Thermal model
- Case studies
- Summary and conclusions

MPSoC Thermal Modeling Problem

- Continuous heat flow analysis
 - Capture geometrical characteristics of MPSoCs
 - Explore different packaging features and heat sink characteristics

Time-variant heat sources

- Transistor switching depends on MPSoC run-time activity
- Dynamic interaction with heat flow

Very complex computational problem!

6

5

MPSoC Thermal Modeling State-of-The-Art

Emulation vs. Simulation/Prototyping

 "To emulate an electronic system is to build a platform capable of imitating its behaviour in an accurate and analyzable way"

- More efficient than SW simulation
- More flexible than pure HW prototyping
- Thermal behavior analysis earlier than HW prototyping

9

MPSoC Architecture Emulation

Designing the Emulated Architecture

Designing the Emulated Architecture

Statistics Extraction Subsystem

Chip and Package Heat Flow Modeling Model interface Input: power model of MPSoC components, geometrical properties Output: temperature of MPSoC components at run-time Thermal circuit: 1st order RC circuit Heat flow ~ Electrical current : Si thermal conductivity Thermal conductivity(W/m^eK) 06 01 07 09 09 depends on temperature Heat spreader and IC compos (IMEC & Freescale, 90nm) -Actual value Сι ge pin veic cu cu cu si si S si si si S Thermal capacitateemantix 27 67 87 47 107 127 Temperature (in Celsius) C_{si,1} G_{1,2}-G_{1,2} si,2G_{2,1} G_{2,1} = $G(t_{\mu})t_{\mu}+(p_{\mu})$; k = 1..m Femperature change cu.n Temperature orestrationstant dr 17

SW Thermal Estimation Tool for MPSoCs

$\overline{Ct_{k}} = -G(t_{k})t_{k} + p_{k}$; k = 1..m

- Creating linear approximation while retaining variable Si thermal conductivity:
 - Si thermal conductivity linearly approx. : $G_{i,i}(t_k) = I + q t_k$
- Numerically integrating in discrete Si thermal conductivity time domain the 60 sec of MPSoC heat flow analysis $t_{k+1} = A(t_k)t_k + B$ Heat flow estimation 1600 1400 Complexity scales linearly with 1200 Non-linear the number of modeled cells Proposed 1000 Time (S. (simulated on P4@ 3GHz) ♦ thermal est 800 linear thermal

thermal library validated against 3D finite element model (IMEC & Freescale)

Outline

- Introduction
- MPSoC thermal modeling
 - Computational infrastructure
 - Closed-loop statistics extraction system
 - Thermal model
- Case studies
- Summary and conclusions

Case Study 1: 4-Core MPSoC

- MPSoC Philips board design:
 - 4 processors, DVFS: 100/500 MHz
 - Plastic packaging
- Software:
 - Image watermarking, video rendering
- Power values for 90nm:

Element	Max Power (mW) 100 MHz	Max Power (mW) 500 MHz
Processor	2,92 x 10 ²	1,02 x 10 ³
D-Cache	1,42 x 10 ²	7,10 x 10 ²
I-Cache	1,42 x 10 ²	7,10 x 10 ²
Priv Mem	0,61 x 10 ²	2,75 x 10 ²
AMBA	0,31 x 10 ²	0,68 x 10 ²

19

Thermal Validation 4-Core MPSoC

MPARM: MPSoC SW simulator: power/thermal models tuned for Philips Simulations too slow: 2 days for 0.18 real sec (12 cells)

Case Study 2: Multi-Core Thermal Control

Outline

Introduction

MPSoC thermal modeling

- Computational infrastructure
- Closed-loop statistics extraction system
- Thermal model
- Case studies
- Summary and conclusions

Conclusions

- Shrinking is providing new processing capabilities through MPSoCs, but creating critical thermal issues
- Need for new thermal-aware modeling methods
 - Orthogonalization of behavior extraction and thermal modeling
 - Novel MPSoC emulation on reconfigurable HW and SW thermal modeling to efficiently extract the behavior of time-variant heat sources
 - Closed-loop thermal evaluation framework enabling run-time testing of thermal management in real MPSoC platforms
- Validation with commercial MPSoC platforms:
 - Fast exploration of thermal behavior of complex MPSoCs
 - Effective tuning of thermal management
 - Thermal run-away avoided with HW-based policies, max. throughput
 - Thermal balancing with negligible performance overhead

23

