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Evolution of Electronics to
Multi-Processor System-on-Chip (MPSoC)

= Roadmap continues: 90—65—45 nm (Sl

90nm SMoOS|
SEnm CMOS

45nm

= Multi-Processor System on-Chip
(MPSoC) architectures:

Multi-Proces

Alowsw urew NVHAS




Design Issues in MPSoCs

= MPSoCs have very sophisticated architectures
= Complex components and CAD tools very expensive
= Time-closure issues, system speed decreased

" |ncreasing thermal issues
® Hot-spots, non-uniform thermal gradients
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Advocating Thermal-Aware Design

= Integration of HW/SW modeling and management
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MPSoC thermal modeling

s Computational infrastructure

m Closed-loop statistics extraction system
m Thermal model

Case studies
Summary and conclusions

MPSoC Thermal Modeling Problem

s Continuous heat flow analysis

m  Capture geometrical characteristics "'
of MPSoCs

Explore different packaging features E _ | e
and heat sink characteristics T

= Time-variant heat sources Very complex

m  Transistor switching depends on computational
MPSoC run-time activity problem!

= Dynamic interaction with heat flow = J




MPSoC Thermal Modeling
State-of-The-Art

m MPSoC Modeling and Exploration:

1. SW simulation: Transactions, cycle-accurate (~100 KHz)
[Synopsys Realview, Mentor Primecell, Madsen et al., Angiolini et al.]

At the desired cycle-accurate level, they are too
slow for thermal analysis of real-life applications!

2. HW prototyping on FPGAs: Core dependent (~MHz):

[Cadence Palladium II, ARM Integrator IP, Heron Eng, Marescaux et al.]

Combination of cycle-accurate MPSoC behavior
and run-time IC heat flow modeling is unheard of
"= Heat Flow Modeling:

1. Software thermal/power models [Skadron et al., Kang et al.]

Too computationally intensive, not able to use detailed
run-time inputs from MPSoC components!

Orthogonalizing
MPSoC Thermal Modeling and Analysis

Framework: MPSoC behavioral model on reconfigurable HW
interacting with efficient thermal estimation




Emulation vs. Simulation/Prototyping

m “To emulate an electronic system is to build a
platform capable of imitating its behaviour in an
accurate and analyzable way”

SW Simulation AW Emulation | HW Prototyping
»Good performance *Close to final
eLower performance *Good flexibility performance
*Maximum flexibility eIndependent from *Reduced flexibility
 Poor accuracy in | actual HW *Dependent on
thermal analyses *Accurate available HW
thrermal modelling (May alter results)

= More efficient than SW simulation
= More flexible than pure HW prototyping
= Thermal behavior analysis earlier than HW prototyping

MPSoC Architecture Emulation
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Emulated MPSoC Sub-system N

«Interchangeable Interconnects
(System Buses and NoCs)

= Processing cores (hard & soft) v
" Interconnections (buses & NoCs) semaphorej
"= Memory subsystem (cache, main, ...)

= Extra peripherals (HW semaphore, interrupt controller)

.
*
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Designing the Emulated Architecture

What we want VS. What we have

Desired: Physical resource:
A fast memory On board BRAM
Latency: 1 cycle Latency: 1 cycle

Mapping

Cache _
(BRAM) Main
NMemory

Designing the Emulated Architecture

What we want VS. What we have

Desired: i Physical resource:
Big memory -4 -~ 0On board DDR RAM
Latency: 3 cycles Latency: 5 cycles




Designing the Emulated Architecture

Proposed solution:
2) Clock management P

CLK VPCM Module
(Frequency
Scaling

1) Mapping

Statistics Extraction Subsystem

Another clock
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Sending Energy Values

Emulated MPSoC
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Chip and Package Heat Flow Modeling

= Model interface
= |nput: power model of MPSoC components, geometrical properties
= Output: temperature of MPSoC components at run-time

m Thermal circuit: 15t order RC circuit
= Heat flow ~ Electrical current ; Si thermal conductivity

¥ depends on temperature
= Heat spreader and IC compos T (IMEC & Freescale, 90nm)

—— Actual value

(W/m
g

Thermal conductivity

107 127
Temperature (in Celsius)
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SW Thermal Estimation Tool for MPSoCs
Ct,=-G (t)t, + p.; k=1.m

m Creating linear approximation while retaining variable
Si thermal conductivity:

= Si thermal conductivity linearly approx. : G;; (t,) = + g t,
= Numerically integrating in discrete Si thermal conductivity

time domain the 60 sec of MPSoC heat flow analysis
tq = At + B
Complexity scales linearly with

the number of modeled cells
(simulated on P4@ 3GHz)

thermal library validated
against 3D finite element
model (IMEC & Freescale)

Heat flow estimation
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Case Study 1: 4-Core MPSoC

s MPSoC Philips board design:  1200um
m 4 processors, DVFS: 100/500 MHz
m Plastic packaging

dCache |iCache | dCache|iCache dCache|iCache

m Software:
= Image watermarking, video rendering o o
32KB 32KB 32KB

= Power values for 90nm: memory memory memory
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Very fast validation of MPSoC
run-time thermal behavior and management
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Case Study 2: Multi-Core Thermal Control

= HW: Sun 8-core Niagara
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Enhancing thermal control in 90nm multi-cores
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Conclusions

= Shrinking is providing new processing capabilities through
MPSoCs, but creating critical thermal issues

= Need for new thermal-aware modeling methods
Orthogonalization of behavior extraction and thermal modeling

Novel MPSoC emulation on reconfigurable HW and SW thermal
modeling to efficiently extract the behavior of time-variant heat sources

Closed-loop thermal evaluation framework enabling run-time testing of
thermal management in real MPSoC platforms

= Validation with commercial MPSoC platforms:
Fast exploration of thermal behavior of complex MPSoCs
Effective tuning of thermal management
Thermal run-away avoided with HW-based policies, max. throughput

Thermal balancing with negligible performance overhead o4
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